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aDepartment of Applied Physics, Fluid Dynamics Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB,

Eindhoven, The Netherlands
bLaMSID, UMR CNRS EDF 2832, EDF R&D, 1 Avenue de Général de Gaulle, 92141 Clamart Cedex, France
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Abstract

The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a

multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers

in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as

well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform

flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results

obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering

are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing

a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream

transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream

transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which

represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream

transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream

reflection coefficient improves.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In duct systems carrying mean flow, flow separation occurs at abrupt area expansions. Interaction between
sound and vorticity disturbances in the shear layer, formed downstream of the expansion, can occur, possibly
leading to sound absorption. This is in particular of interest in technical applications as internal combustion
engine exhaust silencers and silencers in industrial duct systems.

Probably the most extensive experimental work on this topic is that of Ronneberger [1]. He presented results
for both magnitude and phase of the reflection—as well as transmission coefficients of the acoustic plane
pressure waves at an area expansion in a cylindrical duct with anechoic termination.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The effect on the acoustic propagation in ducts with area discontinuities in absence of mean flow is solved
by e.g. Miles [2] and Kergomard and Garcia [3]. Early models to describe the acoustical properties of an area
expansion in a duct with mean flow are that of Ronneberger [4] and Alfredson and Davies [5]. Here, in a low-
frequency plane wave approximation, one-dimensional (1D) linearized equations for the conservation of mass,
momentum and energy are applied to a control volume around the area expansion. Dissipation is accounted
for by entropy fluctuations, associated with the formation of vortices in the mixing region downstream of the
expansion, which is thus included in the control volume. Alfredson and Davies [5] compared theoretical
prediction and experimental data for the reflection coefficient up to a Mach number of 0.15. Reasonable
agreement was found. Ronneberger [4] compared predicted and measured results for the reflection coefficient
up to Mach numbers of 0.6, but also here only good agreement was obtained for Mach numbers below �0.15.
Cummings [6] proposed a similar model, in which scattering is assumed to occur in the control volume, where
the flow has not yet expanded. However, energy losses due to the vorticity are now accounted for by entropy
waves downstream of the control volume. Comparison with Ronneberger’s experimental results yielded better
agreement for the higher Mach numbers. Furthermore, in a later correspondence [7] he concluded that
entropy fluctuations need not to be taken into account as they are of secondary importance and probably are
negligible compared to higher-order modes and shear flow effects. All of the above-mentioned models lack the
effects of higher-order modes as they are low-frequency, plane wave approximations.

Lambert and Steinbrueck [8] proposed a low-frequency, low Mach number model on the basis of the
statement that the magnitude of the reflection coefficient at an area expansion is only Mach number
dependent, whereas its phase is only frequency dependent. The magnitude is calculated from applying
conservation equations to a control volume around the area expansion, in which the mean flow has expanded.
The phase is calculated from an equivalent end correction for no mean flow [9]. Davies [10] proposed a similar
model, in which the phase is calculated from either an equivalent end correction or by including higher-order
modes in the matching of the ducts upstream and downstream of the area expansion. The use of an equivalent
end correction for the phase of the reflection coefficient was extended to higher frequencies by Peat [11], who
also compared results of the analytical model with a finite-element method. It has to be noted here, that the, in
these models, assumed dependency of magnitude and phase of the reflection coefficient on only Mach number,
respectively, only frequency is actually in contradiction with for example experimental results of Ronneberger
[1] and theoretical results of Boij and Nilsson [12] (see also below). Also, in the closely related problems of
reflection at an open pipe with mean flow and scattering at an orifice in a pipe with mean flow the magnitude
and phase is found to be dependent on both Mach number and frequency. This was shown experimentally by
Peters [13,14] and Allam and Åbom [15] and theoretically by Munt [16,17], Rienstra [18] and Cargill [19] for
the open pipe, and by e.g. Hofmans [20] and Testud [21] for the orifice.

Aurégan [22,23] presented a simplified multimodal model for the aero-acoustic behaviour of a sudden area
expansion at low frequency in a cylindrical duct. The uniform mean flow was considered to remain
unexpanded after the area discontinuity, giving an infinitely thin shear layer. The effect of entropy fluctuations
due to mixing downstream of the expansion is not accounted for. The acoustic pressure and radial velocity
field downstream of the expansion was expanded into six modes assuming a prescribed form [24]: a plane wave
mode and a mode accounting for higher-order effects in either direction of propagation, and two
hydrodynamic modes. Subsequently, applying continuity of mean acoustic pressure and volume flux and a
Kutta condition at the area discontinuity gave the acoustic behaviour. A favourable comparison of the
predicted magnitude of the reflection coefficient with the experimental results of Ronneberger [1] was shown.
Earlier, Nilsson and Brander [25,26] employed a full modal analysis for the same configuration of an infinitely
thin shear layer.

An alternative method was given by Dupère and Dowling [27]. They described the interaction of the shear
layer with the sound field by means of an acoustic analogy, in which the shear layer acts as a source/sink term
in the wave equation in the downstream duct. In their model the Mach number is very low and the shear layer
is assumed to be thick, such that hydrodynamic instability does not occur.

Recently, Boij and Nilsson [12] presented a model for the scattering at an area discontinuity in a rectangular
two-dimensional (2D) duct carrying uniform mean flow. Also in this model the flow is considered to remain
unexpanded after the area discontinuity. Higher-order acoustic modes and hydrodynamic modes are taken
into account, and the problem is solved with the Wiener–Hopf technique with application of a Kutta
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condition at the edge of the area discontinuity. A favourable comparison for the scattering coefficients with
experimental results of Ronneberger [1,4] is made. For this purpose a normalization of the Helmholtz number
for both rectangular and cylindrical ducts is proposed. In a latter paper [28] they addressed the issue of
(in)stability of the vortex sheet. As the mean flow is assumed to be uniform and continues unaltered after the
expansion, an infinitely thin shear layer is formed. Such a vortex sheet is always unstable. However, a real
shear layer with finite thickness becomes stable for sufficiently large Strouhal numbers. This is seen for
instance for the hyperbolic-tangent profile, of which the (in)stability was investigated by Michalke [29]. Boij
and Nilsson accounted for this physical effect by suppressing the hydrodynamic instability mode for higher
Strouhal numbers. This was done by introducing a gradually relaxed Kutta condition at the edge, with
empirical coefficients as to give a better fit with experimental results for the downstream reflection coefficient.
They reported that the effect of the relaxed Kutta condition on the downstream transmission coefficient is
negligible. In the same paper they also calculate the absorption of energy at the area expansion, either
accounting for the expansion of the flow downstream of the area discontinuity or not accounting for it.

In this paper, sound scattering at an area expansion in a duct with flow is investigated analytically with a
model based on multimodal analysis of the acoustic field, see e.g. Auregan et al. [30], Kooijman [31,32], Testud
[21], and Leroux [33]. As in the simplified multimodal model of Aurégan [22,23] and in the model of Boij and
Nilsson [12] the contribution of entropy waves due to the expansion of the flow downstream of the area
discontinuity is neglected here. Unlike the alternative models mentioned above, this model allows for a non-
uniform flow profile, such that the thickness of the shear layer can be included. This model does not need the
relaxed Kutta condition used by Boij and Nilsson. First the multimodal method will be discussed.
Subsequently, results for the scattering in case of an infinitely thin shear layer will be compared to results of
Boij and Nilsson’s model [12] and Aurégan’s model [22,23]. Here, in the light of the Helmholtz number scaling
proposed by Boij and Nilsson as mentioned above, both calculations in 2D Cartesian and 2D cylindrical
geometry are presented and compared. Finally, model results are compared with the experimental data of
Ronneberger [1]. Specifically, the effect of taking into account the non-uniformity of the flow (thickness of the
shear layer) is investigated.

2. Multimodal analysis

The multimodal analysis method applied to the sudden area expansion in a duct with flow will be discussed
for both uniform flow (infinitely thin shear layer) and non-uniform flow. Equations will in first instance be
derived for the case of 2D rectangular geometry. At the end the extension to 2D cylindrical geometry, which
involves only minor changes, is given.

2.1. Non-uniform flow

Consider a sudden area expansion in a 2D rectangular duct (Fig. 1). The geometrical configuration can be
split into a duct at xo0 with height h1 and a duct at x40 with height h2. The two are indicated in the figure
h1

h2

x

y

1

2

U(y)
U(y)

x=0

y=0

Fig. 1. Area expansion in a two-dimensional rectangular duct. Configuration is split in duct 1 with height h1 and duct 2 with height h2.

Non-uniform mean flow is present in duct 1 and is assumed to continue in duct 2 with unaltered profile.
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with boxed numbers 1 and 2, respectively. In duct 1 parallel non-uniform mean flow is present. The mean flow
is assumed to continue with unaltered profile in duct 2, where thus only partially non-uniform flow is present.

The Euler equations for conservation of momentum and mass equations, describing the motion of a perfect
and isentropic fluid:

r
D v!

Dt
¼ �r
!

p, (1)

1

r
Dr
Dt
¼ �r
!
� v!, (2)

and

c2
Dr
Dt
¼

Dp

Dt
, (3)

with

D

Dt
¼

q
qt
þ v!� r

!

with r the mass density, p the pressure, v! the velocity vector and c the speed of sound, are linearized
according to: c ¼ c0 þ c0, r ¼ r0 þ r0, p ¼ p0 þ p0, where r05r0, and v!¼ UðyÞ e!x þ u0 e!x þ v0 e!y, with
e!x; e!y unit vectors in the x- and y-direction, to obtain
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Taking r0ðq=qtþUðq=qxÞÞ (6) and subtracting q=qx (4) and q=qy (5) gives

1

c20
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þ
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. (7)

Subsequently, the following non-dimensionalization of the relevant quantities is employed:

p� ¼
1

r0c
2
0

p0; ðx�; y�; h1�; h2�Þ ¼
x

h1
;

y

h1
; 1;

h2

h1

� �
,

ðu�; v�Þ ¼
1

c0
ðu0; v0Þ; o� ¼

oh1

c0
,

MðyÞ ¼M0f ðyÞ ¼
1

c0
UðyÞ; t� ¼

c0t

h1
, ð8Þ

with M the Mach number and o the angular frequency of sound. The function f ðyÞ prescribes the profile of
the mean flow. M0 is a fixed number, which is generally chosen to give the y-averaged Mach number in duct 1.
Furthermore, harmonic waves in the x-direction are assumed, giving the following complex forms:

p� ¼ Pðy�Þ expð�ik�x�Þ expðio�t�Þ,

v� ¼ V ðy�Þ expð�ik�x�Þ expðio�t�Þ,

q� ¼ Qðy�Þ expð�ik�x�Þ expðio�t�Þ, ð9Þ
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with i2 ¼ �1. Here, we have introduced the quantity q� for later use:

q� ¼ i
qp�
qx�

. (10)

k� is the dimensionless wavenumber according to: k� ¼ kh1, where k is the wavenumber with dimension.
Finally, the problem is solved by the finite difference method. Therefore, discretization in the y�-coordinate is
employed by taking N1 equally spaced points in duct 1 and N2 equally spaced points in duct 2. The spacing
between interior points in both ducts 1 and 2 is Dh ¼ h1=N1 ¼ h2=N2, or Dh� ¼ h1�=N1 ¼ 1=N1. The first and
last point is taken half a spacing, i.e. h1�=2N1 ¼ 1=2N1, from the duct wall. Substituting the forms of Eq. (9) in
Eqs. (5) and (7), after employing the non-dimensionalization of Eq. (8), gives, with the above-mentioned
discretization, the following generalized eigenvalue problem for modes in duct 1:

k�

I�M2
0f

2 2iM0fa 0

0 iM0f 0

0 0 I

0
B@

1
CA Q

V

P

0
B@

1
CA ¼ �2o�M0f 0 o2

�IþD2

0 io � I D1

I 0 0

0
B@

1
CA Q

V

P

0
B@

1
CA. (11)

Here I is the (N1 �N1) identity matrix. P and V are (N1 � 1) column vectors giving the value of PðyÞ and V ðyÞ

at the discrete points. f, f2 and fa are (N1 �N1) matrices with on their diagonal the values of f ðy�Þ, f 2
ðy�Þ and

df ðy�Þ=dy�, respectively, at the discrete points in duct 1. D1 and D2 are (N1 �N1) matrices giving the first-,
respectively, second-order differential operator with respect to y�. These matrices also account for the
boundary condition qp�=qy� ¼ 0 at the duct walls. From the definition of q�, see Eq. (10), and Eq. (9) it
follows that: QðyÞ ¼ k�PðyÞ, or in discrete form: Q ¼ k�P. Solving the eigenvalue problem (11) gives all
eigenvectors, i.e. modes, Qe and Pe and Ve, as well as the corresponding eigenvalues, i.e. dimensionless
wavenumbers, ke�, in duct 1. In total 3N1 modes are found, which can generally be divided in N1 acoustic
modes propagating (or decaying) in the þx-direction, N1 acoustic modes propagating (or decaying) in the
�x-direction, and N1 hydrodynamic modes propagating in the direction of the mean flow (þx-direction). The
total solution for q�, and the non-dimensional pressure and velocity disturbance p�, respectively, v� at the
discrete points is a linear combination of these modes:

q�ðx�; t�Þ ¼
X3N1

n¼1

CnQe;n expð�ike;n�x�Þ expðio�t�Þ,

v�ðx�; t�Þ ¼
X3N1

n¼1

CnVe;n expð�ike;n�x�Þ expðio�t�Þ,

p�ðx�; t�Þ ¼
X3N1

n¼1

CnPe;n expð�ike;n�x�Þ expðio�t�Þ ð12Þ

with n an index for the modes and Cn the coefficient of mode n. Note here that if the eigenvalue problem has a
certain solution k�, Q, V, P, also k��, Q

�, �V�, P� is a solution, where superscript � denotes the complex
conjugate. Solutions are thus found in complex conjugate pairs.

For duct 2 an analogous generalized eigenvalue problem as Eq. (11) can be derived for the eigenmodes and
accompanying wavenumbers. However, in duct 2 non-uniform mean flow is only present at the first N1 points,
for yoh1. The fact that the mean flow velocity and its derivative are zero for the N2 �N1 discrete points at
y4h1 has the consequence that an equal number of rows and columns in the matrix in the left-hand side of the
generalized eigenvalue problem, Eq. (11), become zero. The concerning rows correspond to the equations for
the elements of vector V at these discrete points where mean flow is absent. The ‘zero-columns’ correspond to
the same elements of V as they are used as input for the other equations on the rows of Eq. (11). Clearly, for
the generalized eigenvalue problem to remain solvable in duct 2, these ‘zero-rows and -columns’, as well as the
corresponding ones in the matrix in the right-hand side of Eq. (11), have to be omitted. This means that in the
generalized eigenvalue problem for duct 2 V is only defined for the (first) N1 points, at which mean flow is
present. Note that in principle the values of V at the discrete points where mean flow is absent can be deduced
from the pressure modes. The total number of equations and the total number of unknowns (Q, V and P) in
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duct 2 is thus 2N2 þN1. Generally, in duct 2 a number of N2 acoustic modes propagating (or decaying) in the
þx-direction and N2 acoustic modes propagating (or decaying) in the �x-direction are obtained. Since
hydrodynamic modes are associated with sheared mean flow, a number N1 of them, equal to the number of
discrete point with flow, are found.

2.2. Uniform flow

In case uniform mean flow, instead of non-uniform mean flow, is assumed in duct 1, it can be shown that the
vector V is not needed anymore in Eq. (11), in order to solve the modes. Consequently, in formulating an
eigenvalue problem for duct 1 with uniform flow, the use of vectors Q and P is sufficient, and the vector V can
be omitted:

k�
ð1�M2

0ÞI 0

0 I

 !
Q

P

� �
¼
�2o�M0I o2

�IþD2

I 0

 !
Q

P

� �
. (13)

Here, M0 is the uniform mean flow Mach number. Note that when mean flow is completely absent in the duct,
the same formulation of the eigenvalue problem as above can be used with M0 ¼ 0 substituted. Solving
Eq. (13) with N1 discrete points in duct 1 generally gives N1 acoustic modes propagating/decaying in the
þx-direction, and N1 acoustic modes propagating/decaying in the �x-direction. No hydrodynamic modes are
found, since the mean flow is not sheared.

In duct 2 uniform mean flow is present only for yoh1, whereas for y4h1 the fluid is quiescent. The mean
flow is thus discontinuous in y, and an infinitely thin shear layer is present at y ¼ h1. Here, special care has to
be taken to ensure that the pressure disturbance and the fluid displacement in transverse direction are
continuous over the shear layer. For this purpose an additional point is introduced in duct 2 halfway between
point N1 and N1 þ 1, at the position of the infinitely thin shear layer. At this point we consider the amplitude
Pflow, respectively, V flow of the acoustic pressure and velocity in y-direction as ‘seen’ from the region with flow,
as well as the acoustic pressure and velocity amplitude, Pnoflow, respectively, Vnoflow, seen from the no flow
region. Employing a second-order expansion in Dh� for Pðy�Þ around y� ¼ 1 it can be deduced that

Pflow ¼
�PðN1 � 1Þ þ 9PðN1Þ

8
�

3iDh�ðo� �M0k�ÞV flow

8
,

Pnoflow ¼
9PðN1 þ 1Þ � PðN1 þ 2Þ

8
þ

3iDh�o�Vnoflow

8
. ð14Þ

Furthermore, the second derivative accurate to order ðDh�Þ
2 of the acoustic pressure amplitude at points N1

and N1 þ 1 changes into:

d2P

dy2
�

����
N1

¼
PðN1 � 1Þ � PðN1Þ

ðDh�Þ
2

�
iðo� �M0k�ÞV flow

Dh�
,

d2P

dy2
�

����
N1þ1

¼
�PðN1 þ 1Þ þ PðN1 þ 2Þ

ðDh�Þ
2

þ
io�Vnoflow

Dh�
ð15Þ

given that these points are interior points, i.e. the boundary condition for the pressure at the duct walls is not
‘felt’ at these points. Demanding continuity of pressure at the interface between mean flow and no mean flow
yields: Pflow ¼ Pnoflow, and hence from Eq. (14):

3iDh�M0k�V flow ¼ PðN1 � 1Þ � 9PðN1Þ þ 9PðN1 þ 1Þ � PðN1 þ 2Þ

þ 3iDh�o�V flow þ 3iDh�o�Vnoflow. ð16Þ

Furthermore, the transverse acoustic fluid displacement in complex non-dimensional form:

d� ¼ Dðy�Þ expð�ik�x�Þ expðio�t�Þ, (17)

is given by the convective derivative of the transverse velocity

iðo� �M0fk�ÞD ¼ V . (18)
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The additional continuity of displacement required at the interface, i.e. the vortex sheet thus gives

M0k�Vnoflow ¼ o�Vnoflow � o�V flow. (19)

Eqs. (16) and (19) can now be incorporated in order to get the eigenvalue problem for duct 2 with the infinitely
thin shear layer:

k�
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0f
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BBBBB@
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CCCCCA
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0 . . . 1;�9; 9;�1 . . . 3iDh�o� 3iDh�o�
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0
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1
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Q

P

V flow

Vnoflow

0
BBBBB@

1
CCCCCA, ð20Þ

where rows N1 and N1 þ 1 of the second-derivative matrix D2, have to be modified according to Eq. (15).
Since this equation is derived for accuracy of order ðDh�Þ

2, only D2 accurate to order ðDh�Þ
2 can be used.

Furthermore, the profile function f here obviously equals 1 for yoh1 (first N1 points), and 0 for y4h1.
Solving the eigenvalue problem (20) in duct 2 returns the eigenmodes for vectors Q and P as well as

the value of V flow and Vnoflow for the modes. Here, N2 acoustic modes propagating (or decaying) in the
þx-direction and N2 acoustic modes propagating (or decaying) in the �x-direction are obtained. Furthermore
two hydrodynamic modes are found. These two modes are related to the hydrodynamic instability of the
infinitely thin shear layer, known as the Kelvin–Helmholtz instability waves.
2.3. Mode matching

At the interface between the two ducts at x ¼ 0, cf. Fig. 1, continuity of mass- and momentum flux applies.
It can be shown that this yields continuity of the dimensionless pressure and velocity disturbances p� and v� as
well as continuity of the parameter q�, where q� ¼ iqp�=qx�, cf. Eq. (10). In duct 2 the hard wall at x ¼ 0 for
y4h1 yields the condition that the velocity disturbance in the x-direction, normal to the wall, is zero. This
implies that q� ¼ 0 for y4h1. For the case of non-uniform flow the above-stated conditions at x ¼ 0 applied
at the discrete points yield, with the modal expansion for the discretized parameters q�, v� and p�, given by
Eq. (12), the following system of 2N1 þN2 equations:

�Q�1

0
Qþ2

�V�1 Vþ2

�P�1 Pþ2 ð1 : N1; :Þ

0
BBBB@

1
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S1

C�1

Cþ2

 !
¼

Qþ1

0
�Q�2

Vþ1 �V�2

Pþ1 �P�2 ð1 : N1; :Þ

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S2

Cþ1

C�2

 !
. (21)

Here, the eigenmodesQe, Ve and Pe are the columns of matrices Q, V and P. The additional subscripts 1 and 2
refer to duct 1 and 2, respectively. The use of superscripts þ and � reflects a distinction between modes
propagating to the þx-direction (acoustic and hydrodynamic) and the �x-direction (only acoustic). Vectors C
contain the coefficients of the modes. The continuity of pressure only applies for yph1, thus at the first N1

discrete points. Therefore, only the first N1 rows of P
þ
2 and P�2 , containing the pressure disturbance modes, are

considered in the equation above. This is indicated by the additional ð1 : N1; :Þ behind matrices P�2 . Both
matrices S1 and S2 in Eq. (21) are square with size ð2N1 þN2Þ � ð2N1 þN2Þ. S1 can be inverted to obtain the
scattering matrix: S ¼ S�11 S2. This matrix relates the coefficients of all modes propagating away from the area
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expansion in the duct to the coefficients of the modes propagating towards the area expansion:

C�1

Cþ2

 !
¼ S

Cþ1

C�2

 !
. (22)

The scattering matrix contains the complete aero-acoustical behaviour of the area expansion geometry.
In many cases, and also in this paper, only frequencies which are low enough, such that only the (quasi-)

plane waves are propagating (cut-on), are considered. Acoustic energy is then solely carried by these plane
waves, and only their scattering at the area expansion is of interest. Reflection and transmission coefficients of
the plane wave pressure disturbance at the duct expansion can be defined in either direction. When sorting the
above given eigenmode matrices Q, V, P such that the plane wave modes, both for þx and �x propagating,
are in the first column, they are given by

Rþ ¼
C�1 ð1Þ

Cþ1 ð1Þ
¼ Sð1; 1Þ; T� ¼

C�1 ð1Þ

C
�ð1Þ
2

¼ Sð1; 2N1 þ 1Þ,

Tþ ¼
Cþ2 ð1Þ

C
þð1Þ
1

¼ SðN1 þ 1; 1Þ; R� ¼
Cþ2 ð1Þ

C�2 ð1Þ
¼ SðN1 þ 1; 2N1 þ 1Þ. ð23Þ

It has to be noted here that all calculated plane wave modes have to be equally normalized first for these
relations to be useful. Therefore, in calculations the y-averaged amplitude of the pressure disturbance plane
wave modes are set to unity.

In the same way a mode-matching procedure can be done for the case of uniform flow (infinitely thin shear
layer). Here, in duct 2 the velocity disturbance in the y-direction at the side with mean flow and the side
without mean flow is available as an extra parameter at the position of the shear layer. The amplitude of these
variables were denoted V flow and Vnoflow, respectively. The latter will now be used to apply a Kutta condition
at the edge of the area discontinuity at x ¼ 0; y ¼ h1. The Kutta condition states that the flow leaves the edge
tangentially, such that the fluid displacement d as well as the derivative of the displacement with respect to x

equals zero at the edge:

d ¼ 0;
qd
qx
¼ 0 at x ¼ 0; y ¼ h1. (24)

The velocity disturbance equals the convective derivative of the displacement, Eq. (18), such that from Eq. (24)
the condition: Vnoflow ¼ 0, k�Vnoflow ¼ 0 is obtained at x ¼ 0. Note that for simplicity this is in a ‘single mode’
notation. In effect these conditions apply for the sum over all the modes. Incorporating the Kutta condition in
the matching of pressure and mass flux between duct 1 and 2 gives for uniform flow, analogous to Eq. (21):

�Q�1

0
Qþ2

�P�1 Pþ2 ð1 : N1; :Þ

0 Vþnf

0 Vþnfk
þ
2

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S1

C�1

Cþ2

 !
¼

Qþ1

0
�Q�2

Pþ1 �P�2 ð1 : N1; :Þ

0 �V�nf

0 �V�nfk
�
2

0
BBBBBB@

1
CCCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S2

Cþ1

C�2

 !
. (25)

Here, the value of Vnoflow for the modes are in the (single value) columns of matrix Vnf . As for the
other matrices containing modes for pressure disturbance etc. a distinction between þx-propagating and
�x-propagating modes is made denoted by the additional superscripts. Matrices k2 contain the values of the
wavenumbers in duct 2 on the diagonal, such that Vnfk2 gives the modes multiplied by their corresponding
wavenumber. In the equation above S1 measures ðN1 þN2 þ 2Þ � ðN1 þN2 þ 2Þ and S2 measures
ðN1 þN2 þ 2Þ � ðN1 þN2Þ. Since S1 is square it can (in general) be inverted. Subsequent multiplication
with S2 gives the ðN1 þN2 þ 2Þ � ðN1 þN2Þ scattering matrix S analogous to Eq. (22). The reflection and
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transmission coefficients of the plane waves are now given by

Rþ ¼ Sð1; 1Þ; T� ¼ Sð1;N1 þ 1Þ,

Tþ ¼ SðN1 þ 1; 1Þ; R� ¼ SðN1 þ 1;N1 þ 1Þ. ð26Þ

Both the procedure to solve the modes and wavenumbers and the mode-matching are implemented in Matlab.
In the preceding already a distinction between acoustic modes propagating/decaying either to the right
(þx-direction) or the left (�x-direction) and hydrodynamic modes propagating with the mean flow to the right
is discussed. Formally, when the modes are solved their direction of propagation is unknown. In order to
determine the direction of propagation two causality criteria can be used: the Briggs–Bers formalism [34,35]
and the Crighton–Leppington [36] formalism. Note, however, that the Briggs–Bers formalism is not applicable
in the case of an infinitely thin shear layer [37]. Once the direction of the propagation of all modes is known the
mode-matching can be performed. A further identification of the modes can be done on basis of their
wavenumbers and phase velocities. In any case the plane waves need to be identified in order to calculate their
scattering coefficient. Here in most cases a full identification of all modes could be made in first instance on
basis of their wavenumber (and phase velocity). In some cases a distinction between the hydrodynamic
unstable modes and the first higher-order evanescent acoustic modes could not readily be made on basis of the
value of the wavenumber. Both causality criteria were then used to solve this.

2.4. 2D cylindrical geometry

The multimodal method to obtain the sound scattering at a sudden area expansion in a 2D rectangular duct
has been derived above. The method can analogously be derived for 2D cylindrical geometry. In that case the
y-dependency of variables is replaced by a dependency on the radial coordinate r, and the duct heights h1 and
h2 become duct radii r1 and r2, with non-dimensionalization r� ¼ r=r1. Furthermore, the difference between
divergence in a Cartesian coordinate system and in a cylindrical coordinate system has to be taken into
account in Eqs. (1) and (2). It can be shown then that exactly the same eigenvalue problems for the modes and
wavenumbers are obtained as given by Eqs. (11), (13), and (20). Only the term o2IþD2 in the right-hand side
matrix is replaced by o2IþD2 þ r�1� D1. Here, matrix r�1� D1 represents the discretization of ð1=r�ÞðdP=dr�Þ.
The mode-matching procedures are the same as in 2D rectangular geometry.

3. Results

3.1. Infinitely thin shear layer: comparison with alternative models

First, results for the scattering of plane waves at a sudden area expansion in a duct with uniform flow,
yielding an infinitely thin shear layer, as obtained by the multimodal method are compared to results from the
model by Boij and Nilsson [12,28]. The model they presented was for a 2D rectangular duct geometry.
However, they proposed a scaling between 2D rectangular and 2D cylindrical geometry, such that comparison
with experimental data of Ronneberger [1,4], obtained for an expansion in a cylindrical duct, could be made.
Here, multimodal analysis calculations for an area expansion in 2D rectangular are compared to Boij and
Nilsson’s model results. Also calculations for 2D cylindrical geometry are presented and compared to the 2D
rectangular calculations in order to test the scaling rule.

Boij and Nilsson [12] reasoned that for low frequencies well below the cut-on of the first higher-order
acoustic mode, only a plane wave is incident on the area expansion. For cylindrical geometry the incident
sound pressure field is then independent of the angular coordinate, and consequently higher-order modes
which are only dependent on the radial coordinate (radial modes) will be excited at the expansion. From this
they assumed that the area expansion in a cylindrical duct can be considered to be a 2D problem, and hence
can be related to their theory for a 2D rectangular duct. Furthermore, they argued that the predominant
feature is the onset of higher-order modes in the large duct downstream of the expansion. For low frequency
the wavelength is much larger than the transverse dimension of the duct, such that geometrical details will not
be resolved by the sound field. The plane wave scattering at the area expansion would therefore be reasonably
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similar for a rectangular and a cylindrical duct if the area expansion ratio is the same, and provided that the
frequency is normalised by the cut-on frequency of the first higher-order mode in the downstream duct. This
leads to their definition of the normalized Helmholtz number:

He� ¼
ðk0h2Þrec

ðk0h2Þ0
¼
ðk0r2Þcyl

ðk0r2Þ0
. (27)

Here ðk0h2Þrec and ðk0r2Þcyl are the Helmholtz numbers based on the downstream duct height h2 and the
downstream duct radius r2 in rectangular and cylindrical geometry, respectively. ðk0h2Þ0 and ðk0r2Þ0 are the
cut-on Helmholtz numbers for the first higher-order mode (without mean flow) for the downstream
rectangular and cylindrical duct, respectively. They are given by ðk0h2Þ0 ¼ p and ðk0r2Þ0 ¼ k0 � 3:832. The
area expansion ratio Z is given by

Z ¼
h1

h2
¼

r21
r22

(28)

with h1 and r1 the height, respectively, radius of the smaller upstream duct. Combining Eqs. (27), (28)
above gives

He� ¼
1

Z
ðk0h1Þrec

p
¼

1ffiffiffi
Z
p
ðk0r1Þcyl

k0
, (29)

with ðk0h1Þrec and ðk0r1Þcyl the Helmholtz numbers based on the upstream duct height, respectively, the
upstream duct radius in rectangular and cylindrical geometry.

Figs. 2–4 show the magnitude, respectively, phase of the upstream reflection coefficient Rþ for plane waves,
respectively, the magnitude of the downstream transmission coefficient Tþ for plane waves at an area
expansion in a 2D rectangular duct as obtained by the current multimodal method and as presented by Boij
and Nilsson [12,28]. The Helmholtz number on the upstream duct is k0h1 ¼ 0:11, and the area expansion ratio
is Z ¼ h1=h2 ¼ 0:35. The number of discrete points used in the multimodal method is N1 ¼ 70 in the upstream
duct and N2 ¼ 200 in the downstream duct. At these values the results were found to be converged, i.e.
increasing the number of points gave no significant difference in the results for the scattering coefficients.
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Fig. 2. Magnitude of the downstream reflection coefficient Rþ at an area expansion in a duct with uniform flow versus Strouhal number

oh1=U0 (by varying the Mach number). Calculations for a 2D rectangular geometry with Helmholtz number on upstream duct height

k0h1 ¼ 0:11 and area expansion ratio of Z ¼ h1=h2 ¼ 0:35. Solid line: multimodal method with number of points N1 ¼ 70, N2 ¼ 200.

Dotted line: fit of Boij and Nilsson’s result [12,28]. Also the quasi-steady limit without flow and the result of multimodal analysis without

flow are indicated by the dashed and solid arrows, respectively. The dashed line gives the multimodal analysis result for a 2D cylindrical

geometry with the same area expansion ratio and normalized Helmholtz number, He� ¼ 0:10, yielding k0r1 ¼ 0:2268. Here N1 ¼ 100 and

N2 ¼ 169.
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Fig. 3. Phase of the downstream reflection coefficient Rþ at an area expansion in a duct with uniform flow versus Strouhal number

oh1=U0 (by varying the Mach number). Calculations for a 2D rectangular geometry with Helmholtz number on upstream duct height

k0h1 ¼ 0:11 and area expansion ratio of Z ¼ h1=h2 ¼ 0:35. Data indication as in Fig. 2.
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Fig. 4. Magnitude of the downstream transmission coefficient Tþ at an area expansion in a duct with uniform flow versus Strouhal

number oh1=U0 (by varying the Mach number). Calculations for a 2D rectangular geometry with Helmholtz number on upstream duct

height k0h1 ¼ 0:11 and area expansion ratio of Z ¼ h1=h2 ¼ 0:35. Data indication as in Fig. 2.
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Results are calculated for various Mach numbers M0 ¼ U0=c0, and are plotted versus Strouhal number
oh1=U0 in the figures. Also the quasi-steady limit as well as the results obtained by multimodal analysis in
absence of mean flow are indicated by the dashed and solid arrows, respectively. The results of the multimodal
method and the model of Boij and Nilsson are very similar. In particular, both show the hump in reflection
and transmission around Strouhal number 1. For the phase of Rþ no significant difference is seen between
the two models (the difference seen in the graph is in the order of the inaccuracy in extracting the data from
Ref. [12]). Nevertheless, a deviation in the results for the absolute values is seen. Generally, the mode-matching
method gives a lower absolute value for the reflection coefficient and a higher one for the transmission
coefficient than Boij and Nilsson’s model. For the absolute value of the reflection coefficient the deviation
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between the two models is fairly constant at about 1%, at least above a Strouhal number of �0:5. The
absolute value of the transmission coefficient displays a larger deviation, it increases from about 1% for low
Strouhal number to about 4% for high Strouhal number. In particular the result for the absolute value of the
transmission coefficient obtained by Boij and Nilsson does not seem to approach the quasi-steady result (or
multimodal result without flow, which accounts for the finite frequency) for high Strouhal number, i.e. low
flow velocity, whereas the result obtained by the multimodal method does.

Furthermore Figs. 2–4 also show the results obtained by the multimodal method for the equivalent
2D cylindrical geometry. According to the scaling proposed by Boij and Nilsson, discussed above, here
the expansion ratio is the same: Z ¼ r21=r22 ¼ 0:35, and the Helmholtz number on the upstream duct
radius is k0r1 ¼ 0:227, giving a normalized Helmholtz number of He� ¼ 0:10 for both rectangular
and cylindrical geometry, cf. Eq. (29). For the cylindrical geometry the number of discrete points was
N1 ¼ 100 and N2 ¼ 169 in duct 1 and 2, respectively. The values for the reflection and trans-
mission coefficients are calculated at the same Mach numbers as in the 2D rectangular case, and similarly
plotted versus oh1=U0. Generally, the absolute values of the two displayed scattering coefficients
are reasonably close for the rectangular and equivalent cylindrical calculations. However, around
oh1=U0 ¼ 1, corresponding with a Mach number M0 ¼ 0:1, a significant deviation is observed. Here, a
hump in the absolute value of the reflection and transmission coefficient is present for the 2D rect-
angular geometry, whereas this hump is absent for the equivalent 2D cylindrical geometry. It was found that
the observed hump is closely related to a particular behaviour of the unstable hydrodynamic modes and the
first higher-order evanescent acoustic modes [32]. This behaviour appeared to occur only for duct height
ratios, or duct radii ratios of h1=h2p0:5, respectively, r1=r2p0:5. In the present case indeed h1=h2 ¼ 0:35o0:5,
whereas r1=r2 ¼ 0:5940:5. Furthermore, Fig. 3 shows a significant difference in the phase of the upstream
reflection coefficient below oh1=U0 ’ 4 when calculated in 2D rectangular or the equivalent 2D cylindrical
geometry.

Results for the scattering of plane waves at an area expansion in a 2D cylindrical duct with uniform mean
flow obtained by the current multimodal method are also compared to results obtained by the simplified
multimodal method of Aurégan [22,23] described in the introduction. For the configuration k0r1 ¼ 0:227,
Z ¼ r21=r22 ¼ 0:35 the calculated magnitude and phase of the upstream reflection coefficient Rþ and the
downstream transmission coefficient Tþ are plotted as function of the Mach number in Figs. 5 and 6,
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Fig. 5. Magnitude of the downstream reflection coefficient Rþ at an area expansion in a 2D cylindrical duct with uniform flow versus

Mach number M0. Helmholtz number on upstream duct radius is k0h1 ¼ 0:227 and area expansion ratio is Z ¼ r21=r22 ¼ 0:35. Solid line:

result of current multimodal method, N1 ¼ 100, N2 ¼ 169. Dashed line: result of simplified multimodal method by Aurégan [22,23]. Also

the quasi-steady limit and the result obtained with the current multimodal method in absence of mean flow are indicated by the dashed and

solid arrow, respectively.
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Fig. 6. Phase of the downstream reflection coefficient Rþ at an area expansion in a 2D cylindrical duct with uniform flow versus Mach

number M0. Helmholtz number on upstream duct radius is k0h1 ¼ 0:227 and area expansion ratio is Z ¼ r21=r22 ¼ 0:35. Data indication as

in Fig. 5.
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Fig. 7. Magnitude of the downstream transmission coefficient Tþ at an area expansion in a 2D cylindrical duct with uniform flow versus

Mach number M0. Helmholtz number on upstream duct radius is k0h1 ¼ 0:227 and area expansion ratio is Z ¼ r21=r22 ¼ 0:35. Data

indication as in Fig. 5.
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respectively, Figs. 7 and 8. The number of discrete points used in the current multimodal method is N1 ¼ 100
and N2 ¼ 169 in ducts 1 and 2, respectively. The result obtained by the two models are quite similar. The
difference in the magnitude of the downstream reflection coefficient calculated by the two models is only
significant for Mach number less than �0.15, and is about 0:5% at maximum. The difference found in the
phase of the downstream reflection coefficient is reasonably constant at about 0.04 rad (�0:01p rad) above a
Mach number of 0.1. Below that the difference is less. The deviation between the two models in the magnitude
of the downstream transmission coefficient is significant at all Mach numbers (compared to what was seen for
the reflection coefficient), but is only about 0:5% at maximum (at M0 ’ 0:05). The difference in the phase of
the downstream transmission coefficient varies with Mach number, and is at maximum about 0.008 rad
(0:0025p rad) at M0 ’ 0:01.
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Fig. 8. Phase of the downstream transmission coefficient Tþ at an area expansion in a 2D cylindrical duct with uniform flow versus Mach

number M0. Helmholtz number on upstream duct radius is k0h1 ¼ 0:227 and area expansion ratio is Z ¼ r21=r22 ¼ 0:35. Data indication as

in Fig. 5.
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3.2. Comparison with experimental data

Results obtained by the current multimodal method are compared with experimental data of Ronneberger
[1,4] for a cylindrical pipe. In the experiments of Ronneberger the pipe radius upstream of the expansion is
r1 ¼ 25mm, the pipe radius downstream of the expansion is r2 ¼ 42:5mm. This yields an area expansion ratio
of Z ¼ 0:35. Measurements are done at various frequencies and Mach numbers. Here, we will compare with
the experiments for which the frequency is f ¼ 500Hz. This gives a Helmholtz number on the upstream duct
radius of k0r1 ¼ 0:227. For this configuration scattering results were already presented above for the case of an
infinitely thin shear layer. Here, in comparing model results with experimental data, particularly the effect of
introducing a non-uniform mean flow, and thus a shear layer with finite thickness, will be investigated.

The flow profile in the upstream tube in Ronneberger’s experiments was not measured. However, it
can be assumed to obey the empirical power law for turbulent pipe flow as given by Schlichting [38], such that
we have

f ðrÞ ¼

ð2mþ 1Þðmþ 1Þ

2m2
1�

r

r1

� �1=m

; 0prpr1;

0; r1orpr2:

8><
>: (30)

The value of the profile function f ðrÞ averaged over the upstream pipe area pr21 equals unity. The Mach
number as function of radius is given by: MðrÞ ¼M0f ðrÞ, such that M0 is the area averaged Mach number in
the upstream pipe. The profile parameter m varies with Reynolds number Re on the pipe diameter and the
average mean flow velocity:

Re ¼
2r1U0

n
, (31)

with U0 ¼M0c0 and n the kinematic viscosity. For air at room temperature (293K) and atmospheric pressure
n ¼ 1:5� 10�5 m2 s�1. Values for m at different Reynolds numbers are given in Schlichting [38]. For the
measurements with mean flow the Mach numbers are in the range of M0 � 0:018 to 0:45. The upstream pipe
radius is r1 ¼ 2:5� 10�2 m. This gives values for the Reynolds number in the range Re � 2:1� 104 to
Re � 5:1� 105. According to Ref. [38] the profile parameter will consequently be between m � 6:5 for low
Mach number and m � 7:7 for high Mach number. Besides this turbulent profile we also consider the
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following profile:

f ðrÞ ¼

mþ 2

m
1�

r

r1

� �m� �
; 0prpr1;

0; r1orpr2:

8><
>: (32)

Also here the average of the profile function over the upstream pipe area equals unity. This profile is, for the m

values that will be considered here, very close to a jet flow profile, see e.g. [29]. Figs. 9–16 show the
experimental data of Ronneberger [1] for the downstream and upstream reflection and transmission
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Fig. 9. Magnitude of the downstream reflection coefficient Rþ at an area expansion in a 2D cylindrical duct. Helmholtz number on

upstream duct radius: k0r1 ¼ 0:227, expansion ratio: Z ¼ 0:35. � markers: experimental data Ronneberger [1]. Multimodal method

calculations (N1 ¼ 100, N2 ¼ 169) for: uniform mean flow (solid line), turbulent pipe flow, Eq. (30), with m ¼ 7 (dashed line), and flow

profile Eq.(32) with m ¼ 15 (dotted line). Dash-dot line: result of simplified multimodal method by Aurégan [22,23]. Solid line with

	 markers: fit of Boij and Nilsson’s result for the equivalent rectangular geometry [12,28]. Dashed arrow: quasi-steady limit without

mean flow. Solid arrow: multimodal method result without mean flow.
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Fig. 10. Phase of the downstream reflection coefficient Rþ at an area expansion in a 2D cylindrical duct. Helmholtz number on upstream

duct radius: k0r1 ¼ 0:227, expansion ratio: Z ¼ 0:35. Data indication as in Fig. 9.
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Fig. 11. Magnitude of downstream transmission coefficient Tþ at an area expansion in a 2D cylindrical duct. Helmholtz number on

upstream duct radius: k0r1 ¼ 0:227, expansion ratio: Z ¼ 0:35. Data indication as in Fig. 9.
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Fig. 12. Phase of downstream transmission coefficient Tþ at an area expansion in a 2D cylindrical duct. Helmholtz number on upstream

duct radius: k0r1 ¼ 0:227, expansion ratio: Z ¼ 0:35. � markers: experimental data Ronneberger [1]. Multimodal method calculations

(N1 ¼ 100, N2 ¼ 169) for: uniform mean flow (solid line), turbulent pipe flow, Eq. (30), with m ¼ 7 (dashed line), and flow profile Eq.(32)

with m ¼ 15 (dotted line). Dash-dot line: result of simplified multimodal method by Aurégan [22,23]. Dashed arrow: quasi-steady limit

without mean flow. Solid arrow: multimodal method result without mean flow.
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coefficients at the area expansion with the above given configuration. The results are plotted versus the
Strouhal number or1=U0. On basis of the representation in Ref. [1], the error in the magnitudes and phases is
estimated at �0:01 and �0:04 (� �0:01p), respectively, for the experimental data. The figures also show
results of mode-matching calculations for cylindrical geometry with uniform mean flow (infinitely thin shear
layer) as well as with the turbulent pipe flow profile, Eq. (30), with m ¼ 7, and the jet flow profile of Eq. (32)
with m ¼ 15. These latter two non-uniform profiles are plotted in Fig. 17. The number of points in the mode-
matching calculations is N1 ¼ 100 and N2 ¼ 169. For the downstream reflection and transmission coefficients
also the results for an infinitely thin shear layer as obtained by the simplified multimodal method of Aurégan
[22,23] and as obtained by Boij and Nilsson [12,28] for the equivalent rectangular geometry are shown.
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Fig. 13. Magnitude of upstream reflection coefficient R� at an area expansion in a 2D cylindrical duct. Helmholtz number on upstream

duct radius: k0r1 ¼ 0:227, expansion ratio: Z ¼ 0:35. � markers: experimental data Ronneberger [1]. Multimodal method calculations

(N1 ¼ 100, N2 ¼ 169) for: uniform mean flow (solid line), turbulent pipe flow, Eq. (30), with m ¼ 7 (dashed line), and flow profile Eq.(32)

with m ¼ 15 (dotted line). Dashed arrow: quasi-steady limit without mean flow. Solid arrow: multimodal method result without mean

flow.
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Fig. 14. Phase of upstream reflection coefficient R� at an area expansion in a 2D cylindrical duct. Helmholtz number on upstream duct

radius: k0r1 ¼ 0:227, expansion ratio: Z ¼ 0:35. Data indication as in Fig. 13.
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The quasi-steady limit as well as the result obtained by the current multimodal method in absence of mean
flow are indicated by the dashed and solid arrows, respectively.

The effect of a non-uniform mean flow compared to uniform mean flow on the magnitude of the reflection
and transmission coefficients in the multimodal method is opposite for the turbulent pipe flow and the jet flow
profile. The magnitudes of Rþ, Tþ and T� decrease when taking the turbulent profile compared to the
uniform flow profile, whereas the magnitude of R� increases. For the jet flow profile this is exactly opposite.
Concerning the phase of the reflection and transmission coefficients the turbulent pipe flow profile and the jet
flow profile qualitatively have the same effect compared to uniform flow for Rþ and T�. For the phase of Tþ
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Fig. 15. Magnitude of upstream transmission coefficient T� at an area expansion in a 2D cylindrical duct. Helmholtz number on

upstream duct radius: k0r1 ¼ 0:227, expansion ratio: Z ¼ 0:35. Data indication as in Fig. 13.
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radius: k0r1 ¼ 0:227, expansion ratio: Z ¼ 0:35. Data indication as in Fig. 13.
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and R� the effect is opposite. The flow profile which gives the best fit between mode-matching calculations and
experimental data varies for the different reflection and transmission coefficients. For the magnitude of Rþ the
jet flow profile clearly gives a better resemblance with experimental data compared to the uniform profile,
whereas the turbulent pipe flow profile gives a worse prediction. For the phase of Rþ the jet flow profile seems
to give better results for some Strouhal numbers, however, the turbulent pipe flow profile gives the best results
for very low Strouhal. The experimental data for the magnitude of the downstream transmission coefficient
Tþ is between the mode-matching results for uniform flow and turbulent pipe flow. The jet flow profile gives
worse resemblance compared to uniform flow. The same as for Tþ is more or less seen for the upstream
reflection coefficient R�. Although here, clearly, the turbulent pipe flow profile gives better resemblance with
experiments for the magnitude of R� at Strouhal numbers larger than 1. The jet flow profile gives a worse
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prediction for both magnitude and phase of R�. For the upstream transmission coefficient T� the results for
the jet flow profile are most consistent with experimental data, both for magnitude and phase. The turbulent
pipe flow profile gives a worse prediction at least for the magnitude of T� compared to the other profiles.
Thus, for the magnitudes of Rþ and T� the calculations with the jet flow profile give a better prediction than
those with uniform flow. The calculations with the turbulent pipe flow give a worse prediction. For the
magnitudes of Tþ and R� the calculations with the turbulent pipe flow profile give a slightly better
resemblance with experiments than those with uniform flow. The jet flow profile clearly gives a worse
prediction in these cases. For the phase of the reflection and transmission coefficients the result of the
calculations are most consistent with experiments for large Strouhal number. Here, the results for the different
flow profiles coincide. At low Strouhal numbers the deviation in phase between experiments and calculations
is larger. The jet flow profile seems to give a better prediction in this range than the uniform flow profile,
except for R�. At high Strouhal numbers the results obtained for the different flow profiles coincide. For the
uniform flow profile, the (infinitely thin) shear layer is always unstable. For the non-uniform profiles this
hydrodynamic instability however vanishes at sufficiently high Strouhal number (in this case at approximately
or1=U0 ¼ 12). This means that for the area expansion the effect of the hydrodynamic instability, and in
particular the non-vanishing of it for infinitely thin shear layers, is negligible for high Strouhal numbers. This
conclusion was also drawn by Boij and Nilsson [28] and Howe [39]. Note that calculations with the jet flow
profile, Eq. (32), with other, lower, values of the profile parameter m than used here, yielding a thicker
boundary layer and shear layer, can be found in Ref. [21]. Qualitatively the effect on the scattering coefficients
compared to the case of uniform flow is the same for these lower m values as observed here for m ¼ 15. Only,
quantitatively, the deviation from the case of uniform flow and from the experimental data is larger for lower
values of m. It also has to be noted here that for the turbulent pipe flow profile with profile parameter m ¼ 7 as
used above the displacement thickness d1 and momentum thickness d2 are d1=r1 ¼ 0:10 and d2=r1 ¼ 0:08,
respectively, whereas for the used jet flow profile with profile parameter m ¼ 15 these values are d1=r1 ¼ 0:06
and d2=r1 ¼ 0:03, respectively. Furthermore, the results obtained by the current multimodal method for an
infinitely thin shear layer are generally closer to experimental data than those obtained by the simplified
multimodal method of Aurégan [22,23]. For the downstream reflection coefficient Rþ the results obtained by
Boij and Nilsson [12,28] for the equivalent 2D rectangular geometry coincide slightly better with experiments
than the multimodal method results for uniform mean flow in 2D cylindrical geometry. This especially holds
in the region, where the hump is observed. As mentioned above this hump is, however, a result of the 2D
rectangular geometry they used.
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4. Conclusion

The scattering of sound at a sudden area expansion in a duct carrying mean (sheared) flow has been
modelled with a multimodal analysis method. In this method the pressure and velocity disturbance fields are
solved as an expansion of eigenmodes both upstream and downstream of the area expansion. Mode matching
at the area discontinuity, i.e. demanding continuity of the acoustic mass and momentum flux, subsequently
gives the scattering matrix, which relates all modes.

Calculations have been done for both 2D rectangular and 2D cylindrical geometry and for uniform mean
flow (infinitely thin shear layer) as well as non-uniform mean flow. Scattering results for the 2D rectangular
geometry with uniform flow are compared to results of the model of Boij and Nilsson [12,28]. Especially for
the downstream reflection coefficient of plane waves good agreement is found. Also calculations for a 2D
cylindrical duct with uniform flow with the same area expansion ratio are carried out in order to test the
scaling rule which is proposed by Boij and Nilsson [12] for comparison of 2D rectangular calculations with
experiments is cylindrical geometry. Generally, the suggested scaling is found to be useful for the magnitudes
of the scattering coefficients. However, around a Strouhal number of about unity, specific behaviour of the
scattering coefficients is observed depending on the ratio of duct heights, respectively, the ratio of duct radii.
Since for given area expansion ratio the ratios of duct heights and ratio of duct radii is not the same, a
deviation between calculations for the two geometries can be seen. The mentioned behaviour in the scattering
coefficients is closely related to the behaviour of the unstable hydrodynamic modes and the first higher-order
evanescent acoustic modes [32].

Results for the plane wave scattering coefficients as calculated by the multimodal method are fairly
consistent with experimental data from literature [1] for an area expansion in a cylindrical pipe. Results
obtained by taking a uniform flow profile (infinitely thin shear layer) already give a slightly better prediction of
the experimental results than the simplified multimodal method of Aurégan [22,23]. Furthermore, taking a
turbulent pipe flow profile in the calculations yields a better agreement compared to a uniform flow profile for
the downstream transmission and the upstream reflection coefficient. However, worse agreement is seen for
the upstream transmission and downstream reflection coefficient. On the contrary, compared to uniform flow
a non-uniform jet flow profile, which represents more a typical shear layer flow downstream of the expansion,
gives worse agreement for the downstream transmission and the upstream reflection coefficient, whereas
prediction for the other coefficients improves. As the turbulent pipe flow profile would best resemble the flow
upstream of the expansion, whereas the jet flow profile would best resemble the flow downstream of the
expansion, a physical argument is present for having employed these two profiles in the present model
calculations. A related physical explanation may thus be present for the fact that different plane wave
scattering coefficients are predicted better by either employing a turbulent pipe flow- or a jet flow profile.
However, as the scattering at the expansion is complex, i.e. all modes propagating towards and away from the
expansion are related, this will be not straightforward.
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